Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

В ближайшие годы на наших глазах обещает развернуться прелюбопытнейшая технологическая гонка. Два российских производителя вертолетной техники, К. Б. Камова и Миля, и один американский, Sikorsky, практически одновременно объявили о начале разработки вертолета с толкающим винтом.

Новые модели обещают существенно изменить привычные представления о винтокрылых машинах: проектная максимальная скорость каждой из них значительно превышает 400 км/ч, которые принято считать технологическим пределом для вертолета

Осведомленный читатель наверняка вспомнит, что попытки создать скоростной вертолет с толкающим винтом предпринимались довольно давно и некоторые из них увенчались успехом если не в коммерческом, то хотя бы в техническом плане.

Lockheed AH-56 Cheyenne, совершивший свой первый полет в сентябре далекого 1967 года, мог развивать внушительные 393 км/ч.

Но для военных скорость была не так важна, как надежность, простота и дешевизна конструкции, поэтому проект был закрыт и изящный вертолет с дополнительным толкающим винтом уступил место AH-64 Apache традиционной конструкции.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд Вертолет Ка-52 обещает стать неотъемлемым элементом транспортной системы, сделав легко доступной любую точку страны, независимо от степени развития аэродромных сетей.

Однако для вертолета 393 и свыше 400 км/ч — это принципиальная разница. В то время как Cheyenne вплотную подобрался к заветному пределу, будущие модели с толкающим винтом обещают его значительно превзойти. А для этого, помимо толкающего винта, нужны дополнительные технологические хитрости.

Все три прототипа — «Камова», «Миля» и Sikorsky — выглядят по‑разному. Sikorsky X2 представляет собой машину с соосным несущим и дополнительным толкающим винтами. Ка-92 отличается наличием соосного толкающего винта.

Ми-X1 — это вертолет традиционной схемы с несущим, рулевым и дополнительным толкающим винтами.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Разослав по всему миру пресс-релизы с информацией экономического характера, все три фирмы объявили обет молчания касательно деталей конструкции и принципов работы новых машин.

На сегодняшний день «Миль» и «Камов» порадовали заинтригованную публику только несколькими макетами перспективных вертолетов, отдельные экземпляры которых весьма значительно отличаются друг от друга и не характеризуются высокой детализацией.

А вот опытный образец Sikorsky X2, уже прошедший наземные испытания, все желающие могли рассмотреть на выставке HeliExpo 2008 в Хьюстоне. На примере этой машины мы попробуем разобраться, как будут устроены вертолеты нового поколения.

Кстати, формально аппарат с толкающим винтом следует называть не вертолетом, а винтокрылом, так как его горизонтальная тяга определяется не несущим винтом, а дополнительным движителем. И все же позволим себе называть машины по старинке: будет обидно, если слово, к которому мы привыкли, канет в лету вместе с устаревшей конструкцией.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Лопасть Оккама

Технологический предел скорости вертолета определяется разницей в скорости движения наступающей и отступающей лопастей несущего винта относительно воздуха. Скорость движения вертолета прибавляется к скорости наступающих лопастей и вычитается из скорости отступающих лопастей.

Если угол атаки лопастей на наступающей и отступающей сторонах ротора будет оставаться неизменным, подъемная сила на наступающей стороне будет значительно больше, чем на отступающей, и вертолет перевернется.

Автомат перекоса вертолета классической схемы устроен так, чтобы компенсировать эту разницу, циклически уменьшая угол атаки лопастей на наступающей стороне и увеличивая на отступающей.

Это значит, что винт ни при каких обстоятельствах не сможет реализовать весь потенциал подъемной силы: даже при максимальном угле атаки лопастей отступающей стороны подъемная сила наступающей стороны будет далека от максимально возможной.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд Винтокрыл Ка-22 был разработан в конце 50-х годов для военно-воздушных сил СССР. Грузовой аппарат с двумя несущими и двумя толкающими роторами мог принимать на борт до 16,5 тонн груза и летать со скоростью 350 км/ч. Интересно, что на высокой скорости несущие винты переходили в режим авторотации, и аппарат превращался в огромный автожир. Ка-22 совершил свой первый полет 15 августа 1959 года. В августе 1964 один из опытных образцов винтокрыла вошел в неконтролируемый правый поворот, за которым последовало сваливание. Из пяти членов экипажа лишь троим удалось катапультироваться. После трагической аварии проект был закрыт.

Так же расточительно мы обращаемся с подъемной силой, заставляя вертолет лететь вперед. Чтобы набрать скорость, приходится увеличивать угол атаки лопастей в задней части ротора и уменьшать в передней. Максимального угла атаки всех лопастей, равно как и максимально возможной подъемной силы, мы не получим.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд Схема с двумя пересекающимися роторами, установленными под небольшим углом друг к другу, была впервые применена в 1942 году в нацистской Германии для небольшого противолодочного вертолета Flettner Fl 282 Kolibri. Ее придумал конструктор Антон Флеттнер, который после войны присоединился к американской компании Kaman. Основное преимущество синхрокоптеров, как иногда называют вертолеты с пересекающимися роторами, заключается в повышенной стабильности при зависании. Кроме того, синхрокоптеры работают значительно тише вертолетов, построенных по классической схеме. На сегодняшний день в мире эксплуатируется около 40 вертолетов K-Max.

Интересно, что в вертолетах соосной схемы (большинство моделей Камова) для обоих винтов используется практически такой же автомат перекоса, как в одновинтовых машинах.

Роторы, вращающиеся в противоположные стороны, компенсируют потерю подъемной силы на отступающих лопастях без помощи автомата перекоса, поэтому схема Камова превосходит классическую по энерговооруженности.

Но необходимость создавать горизонтальную тягу с помощью несущих винтов по‑прежнему заставляет идти на энергетический компромисс.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд Sikorsky S-72 — это уникальная гибридная экспериментальная платформа с несущим крылом, основным и рулевым роторами и двумя реактивными двигателями, предназначенная для испытания различных вертолетных схем. Летающая лаборатория впервые оторвалась от земли 12 октября 1976 года. Основной ротор S-72 был сбрасываемым: если в полете что-то шло не по плану, испытатели могли одним нажатием кнопки превратить вертолет в реактивный самолет и вернуться на аэродром. На Sikorsky S-72 была испытана концепция ротора X-wing, широкие и жесткие лопасти которого после набора высоты останавливались и играли роль несущего крыла.

В соосной схеме Sikorsky X2 автомат перекоса не несет компенсаторных функций. Несущие винты не отвечают за создание горизонтальной тяги и компенсируют взаимное стремление к крену, поэтому необходимость в циклическом изменении шага винта отпадает.

И наступающая, и отступающая стороны ротора X2 всегда развивают максимум подъемной силы. Специалисты Sikorsky называют эту технологию ABC (концепция наступающей лопасти, Advancing Blade Concept).

Согласно ABC подъемная сила определяется мощью наступающей лопасти, а не ограничивается возможностями отступающей. Это означает, что вертолет станет экономичнее и сможет преодолевать большие расстояния без дозаправки.

Но главное, что по сравнению с вертолетами привычных схем он сможет поддерживать высоту при меньшей скорости вращения главного ротора. А это один из определяющих факторов максимальной скорости.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Чем медленнее, тем быстрее

На определенной скорости горизонтального полета скорость движения отступающей лопасти относительно набегающего потока воздуха, а значит, и подъемная сила становятся равны нулю.

Для вертолета классической конструкции, подъемная сила которого ограничена возможностями отступающих лопастей, наступает технологический предел скорости, приблизительно равный 400 км/ч.

Однако вертолет с технологией ABC может спокойно продолжить разгон — даже после того как подъемная сила на отступающей стороне исчезнет, на наступающей она будет продолжать расти. Концепция уже доказала свою жизнеспособность на экспериментальном вертолете Sikorsky S-69.

С помощью двух реактивных двигателей, создающих горизонтальную тягу, аппарат разогнался до 518 км/ч, опираясь на подъемную силу наступающих лопастей соосного винта.

Sikorsky X2
Разработчик Sikorsky Aircraft
Экипаж 2 человека
Назначение Экспериментальная платформа
Особенности конструкции
Силовая установка Турбовальный двигатель LHTEC T800-LHT-801 (1000−1340 кВт)
Несущий винт 2 соосных четырехлопастных ротора
Толкающий винт 6-лопастной ротор
Система управления электродистанционная Fly-by-Wire
Крепление лопастей бесшарнирное
Динамические показатели
Крейсерская скорость 460 км/ч
Максимальная взлетная масса 3600 кг
Дальность полета без дозаправки 1300 км

Когда законцовки лопастей вертолета приближаются к скорости звука, сопротивление вращению резко возрастает. Это может стать следующим скоростным пределом для вертолета. Скорость вращения несущих роторов Sikorsky X2 автоматически снижается, начиная со скорости 390 км/ч.

На максимальной скорости, а это 474 км/ч, замедление составит 20%.

Тот факт, что скорость горизонтального полета не определяется несущими винтами и подъемная сила используется максимально эффективно, позволяет роторам вращаться очень медленно, а вертолету — лететь очень быстро.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд Знаменитый конвертоплан V-22 Osprey разрабатывался компаниями Bell и Boeing в течение 30 лет. Летающий трансформер совершил первый испытательный полет 19 марта 1989 года и вскоре продемонстрировал способность превращаться из вертолета в самолет прямо в воздухе. Максимальная скорость V-22 достигает 638 км/ч. Отчасти Osprey повторил судьбу Cheyenne: конвертоплан, сложнейшая конструкция которого на 70% состоит из композитных материалов, оказался слишком дорогим для повсеместного применения в армии ($70 млн за единицу в 2007 году). Тем не менее, на сегодняшний день V-22 остается единственным конвертопланом, выпускаемым серийно.

Система управления Sikorsky X2 — электродистанционная (Fly-by-Wire). Ни один из органов управления не имеет механической связи с исполнительными механизмами — пилот лишь отдает команды компьютеру, управляющему сервоприводами.

Электронное управление позволило реализовать систему активного подавления вибраций, интеллектуальное управление шагом и скоростью вращения роторов, единую систему контроля технического состояния машины, простой переход на авторотацию в случае отказа двигателя.

Все винты приводятся одним турбовальным мотором LHTEC T800 мощностью свыше 1000 кВт. Общий шаг регулируется электроприводами, встроенными во втулки бесшарнирных несущих винтов.

Кстати, сами винты сделаны из композитных материалов и отличаются улучшенным соотношением подъемной силы к сопротивлению за счет инновационной формы и профиля. Втулка соосного винта X2 будет заключена в аэродинамический обтекатель, который значительно снижает аэродинамическое сопротивление машины на скоростях свыше 400 км/ч.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд Аббревиатура VTDP расшифровывается как Vectored Thrust Ducted Propeller, то есть ротор с управляемым вектором тяги. X-49A VTDP представляет собой многоцелевой военный вертолет Sikorsky YSH-60F Seahawk, основательно переделанный компанией Piasecki в целях испытания перспективной скоростной схемы. Толкающий хвостовой ротор машины установлен в трубе, за которой располагаются киль и руль высоты. Вращательный момент основного ротора компенсируется воздушным потоком, направляемым килем. На высокой скорости крен машины управляется с помощью флаперонов. Первый полет X-49A VTDP состоялся 29 июня прошлого года. В настоящее время испытания продолжаются.

Распространено заблуждение, что у Sikorsky X2 вовсе нет автомата перекоса. Убедиться в обратном вы можете сами, внимательно рассмотрев фотографии машины.

Увидеть этот узел непросто, потому что циклический шаг у X2 регулируется только для нижнего несущего винта.

Для управления креном и маневрирования на низких скоростях этого вполне достаточно — ведь несущий ротор не участвует в создании горизонтальной тяги в крейсерском полете.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд Знаменитый Chinook — двухвинтовой двухмоторный тяжелый транспортник — состоит на вооружении ВВС США с середины 60-х годов. И в те времена, и даже сегодня эта махина способна обогнать многие вертолеты традиционной конструкции — максимальная скорость CH-47 достигает 315 км/ч. Аппарат может взять на борт до 55 пехотинцев и до 13 тонн груза. Chinook — один из немногих вертолетов с необычной конфигурацией винтов, получивших широкое распространение, производящихся серийно и применяющихся военными разных стран до сих пор. В настоящее время CH-47 состоит на вооружении США, Великобритании, Италии, Австралии, Японии и еще многих стран.

Испытание временем

Вертолет, показанный на выставке в Хьюстоне, — это всего лишь демонстратор технологии X2, на базе которой Sikorsky предлагает построить целую серию разнообразных летательных аппаратов различного назначения.

Это может быть и высокоскоростной боевой вертолет, и экономичный (и не менее быстрый) пассажирский вертолет бизнес-класса, и тяжелый транспортник с грузоподъемностью до 20 т, и 40-тонный летающий кран. Также по технологии X2 планируется построить беспилотный летательный аппарат.

Компания обещает, что ближе к концу нынешнего года состоятся первые летные испытания X2. Они-то и расставят все точки над i в будущем вертолетостроения.

В конструкции Sikorsky X2 используется перспективная система бесшарнирного ротора.

«Миль» обещает представить широкой публике действующий образец машины с толкающим винтом в 2011 году.

Это будет скоростной пассажирский вертолет, который призван разделить участь самолетов региональных авиалиний в труднодоступных районах со слаборазвитой аэродромной сетью.

Сможет ли Ми-X1 тягаться с машиной Sikorsky, пока непонятно: вертолет с единственным несущим винтом не может воспользоваться преимуществами концепции наступающей лопасти.

По мнению президента компании Sikorsky Aircraft Джеффри Пино, Sikorsky X2 должен кардинально изменить расстановку сил на рынке винтокрылых машин. Если проект будет воплощен в жизнь, к вертолетам будут предъявляться принципиально иные требования.

Ka-92 с соосным несущим и соосным толкающим винтами будет рассчитан на перевозку 30 пассажиров на расстояние более 1400 км без дозаправки. Крейсерская скорость вертолета будет достигать 450 км/ч.

«Ка-92 — это не просто вертолет, это элемент транспортной системы, которая в совокупности с магистральными самолетами сделает доступной любую точку нашей страны, — говорит генеральный конструктор ОАО «Камов» Сергей Михеев.

— К примеру, вылетев из Мурманска, Ка-92 с нефтяниками-вахтовиками на борту мог бы долететь до нефтяных платформ в районе Штокманского месторождения, удаленных на 700−800 км, и вернуться на аэродром базирования без дозаправки».

Специалисты фирмы «Камов» обещают применить несколько принципиально новых для вертолетной отрасли технических решений, которые позволят радикально увеличить скорость полета машины. Подробности пока не раскрываются. На разработку Ка-92 «Камов» отводит себе не менее восьми лет. «Что касается сроков, я собираюсь еще при жизни полетать на этом вертолете», — отшучивается 70-летний конструктор Михеев.

Торопиться конструкторам некуда. Принимая во внимание различия в назначении и конструкции всех трех машин, можно предположить, что прямыми конкурентами они не станут. Кроме того, до начала летных испытаний трудно сказать, какая из трех предложенных схем окажется самой быстрой, самой экономичной и самой надежной.

Ликбез. Самолеты с толкающим винтом (bom100)

Многим до сих пор кажется, что самолеты с толкающим винтом — это какая-то экзотика, и вообще придурь конструкторов-неформалов. Однако схема не только до сих пор применяется, но и применяется широко, а значит — это обусловлено какими-то важными преимуществами.

Одно из главных преимуществ — правильно спроектированный самолет с толкающим винтом имеет примерно на 20% более высокое аэродинамическое качество, чем аналогичный самолет с тянущим винтом. Это огромная цифра, за которую любой авиаконструктор чёрту душу продаст. Но откуда же берется такая разница?

Читайте также:  3 секрета покупки дешевых авиабилетов - samoletos.ru

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Как известно, любой винт создает поток турбулентного (закрученного) за собой воздуха. Тянущий винт отбрасывает струю воздуха на фюзеляж, центроплан и крылья — причем этот поток, вращаясь, давит на одно крыло сверху, а на другое снизу, что вынуждает конструкторов как-то компенсировать этот вредный момент, теряя драгоценную мощность.

Хуже того — поток, вращаясь вокруг фюзеляжа, вызывает вторичную турбулентность, на которой теряется существенная часть мощности.

Частичной контрмерой служит удлинение носовой части фюзеляжа — но это паллиатив, даже многометровые носы не решают проблему, при этом удлинение фюзеляжа само по себе привносит дополнительное сопротивление воздуху и увеличивает массу конструкции.

Известно также, что воздух в полете уплотняется ближе к задней кромке крыла, что создает больше возможностей для винта, чтобы там от него эффективно оттолкнуться. Поэтому толкающий винт работает в среде более плотного воздуха и может лучше реализовать мощность — при прочих равных он может быть несколько меньшего диаметра и будет иметь меньшие потери.

Более того — свежие аэродинамические исследования показали, что толкающий винт, помещенный в заторможенный спутный след от обтекаемого тела, может давать тягу существенно бОльшую, чем тот же винт в открытом воздухе — причем рост КПД винта стремится к той же магической цифре +20%.

Это дополнительно к уже давно известной разнице в аэродинамическом качестве самолета. Это произвело небольшую революцию во взглядах на оптимальные компоновки винтовых самолетов, и даже породило разработки специальных винтов для наиболее эффективной работы толкающими в сопутном следе.

На фото в заголовке вы видите современный (да что там — новейший!) ударно-разведывательный самолет AHRLAC (Advanced High Performance Reconaissance Light Aircraft) разработки ЮАР.

Самолёт представляет собой цельнометаллический свободнонесущий высокоплан с одним турбовинтовым двигателем Pratt&Whitney Canada PT6А-66 мощностью 950 л.с. Особенность этого высокоплана — обратная стреловидность крыла, раздвоенный хвост и толкающий винт, который располагается в задней части фюзеляжа.

Продолжительность полёта достигает 7,5 — 10 часов (что выдающееся достижение для столь легкой машины). Остальные ТТХ также внушают:

Максимальная скорость: 500 км/ч
Практическая дальность: 2 100 км
Практический потолок: 9 500 м

Боевая нагрузка: 800 кг + пушка в фюзеляже

В общем, Ил-2 рыдает. И ведь в конструкции этого самолета в принципе нет никакого хайтека и никаких экзотических материалов, обычный клепанный дюраль и механическое управление тягами — сходную машину можно было без проблем построить до второй мировой войны.

При этом схема выглядит чрезвычайно привлекательной именно для ударного самолета (включая пикирующий бомбардировщик) — компактная кабина, которую легко бронировать и которая вдобавок прикрыта сзади мотором, с прекрасным обзором и удобной установкой стрелкового вооружения, винт не мешает бомбометанию с отвесного пикирования, и так далее.

Надо сказать, что даже перед войной не все в СССР были идиотами, в материалах Новосибирского филиала ЦАГИ сохранился проект оригинальной летающей танкетки-штурмовика Москалёва «ЛТ» с мотором М-11 (имевшей также заводское обозначение «САМ-23») с такой вот схемой — мотор М-11 за кабиной, толкающий винт, двухбалочный хвост.

Состав вооружения для самолета весом чуть более одной тонны был очень мощным: две пушки ШВАК с боекомплектом по 200 (в перегрузку по 500) снарядов; два ШKACa с боезапасом по 1500 (2000) патронов; четыре (шесть) РС-82 или 400 кг бомб (на двух держателях за счет PC и перегрузки).

По расчетам, при установке более мощного мотора (например, М-17) можно было еще усилить бронирование и вооружение, а общий вес боевой нагрузки увеличить до 1500 кг.

Мотор М-11 — это тот же самый мотор, что ставили на У-2, их в СССР было овердофига и стоили они копейки, да и М-17 уже ушел из «большой» авиации, их было множество после капремонтов, и было бы разумным использовать эти моторы именно на дешевых штурмовиках. Но — не взлетело. Заводы надрывались, делая сложные Ил-2, которых всё равно хватало на 2-3 вылета, а летчиков гнали в бой на учебных У-2.

А вот вам пример конструкторского минимализма с использованием толкающей схемы:

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Это очень известный и популярный в мире самолетик Bede BD-5. «С тех пор как в прессе появилась первая информация о BD-5, — заметил популярный журнал «Флюгревю» (ФРГ), — весь авиационно-спортивный мир разделился на два лагеря: одни считают Джима Беде шарлатаном, а другие гением».

Главное, что поражает сторонников и противников Беде — скорость, с которой летает его изящный самолетик, выглядящий как «настоящая», всамделишная машина. С 70-сильным двухтактным двигателем воздушного охлаждения «Микро» разгоняется до 373 км/ч.

И хотя полетный вес стремительного моноплана составляет всего 322 кг, он оборудован закрытой просторной кабиной, убирающимся трехколесным шасси, закрылками, полным комплектом пилотажно-навигационного оборудования. Смехотворно мал расход топлива — 26,5 л за час полета с крейсерской скоростью 368,5 км/ч.

Аэродинамика, благодаря которой BD-5 приобрел столь удивительную быстроту и экономичность, не в первый раз изумляет специалистов и дилетантов.

Самолетик продается в виде набора деталей для самостоятельной сборки, причем наборчик стоит в 10 раз дешевле самой дешевой Цессны. И надо заметить, что там тоже нет ничего сверхтехнологичного — основные элементы силового набора сделаны из фанеры и простых катанных профилей, обшивка — тонкий листовой алюминий (может быть заменен на перкаль — но зачем?).

Двигатель расположен в идеальном для центровки месте. Толкающий винт работает в лучших условиях, чем тянущий, — не тратит сил на бесполезную обдувку фюзеляжа. Так как пропеллер поднят над продольной осью самолета, нет необходимости в высоком шасси. Его легко сделать трехколесным, с носовой стойкой.

Из-за 6лагоприятной центровки (все самые массивные агрегаты — вблизи центра тяжести) можно обойтись небольшими рулевыми поверхностями с коротким плечом от центра тяжести самолета. Фюзеляж укорачивается, пилоту не нужно прилагать больших физических усилий к рычагам управления. Компактный корпус более жесток и прочен.

В целом достигается экономия в весе, а следовательно, и в затратах на постройку машины.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Предложив свой «конструктор» для взрослых, Джеймс Беде и его фирма честно выполнили правила игры: сборка самолета должна быть посильна мало-мальски опытным самодельщикам и занимать не более 500 рабочих часов.

Каждая заготовка тщательно размечена, снабжена подробнейшими чертежами в масштабе 1:1 и обстоятельными рекомендациями по обработке и сборке. Брошюры, содержащие пооперационное руководство с точными ссылками на необходимые инструменты, выполнены наглядно и скрупулезно.

Так же проста и сравнительно дешева эксплуатация собранного самолета.

С учетом амортизации, расходов на обслуживание, профилактический ремонт, топливо, перелет «Микро» на короткое расстояние (Сан-Франциско — Лас-Вегас) занимающий 2,3 ч, стоит 8 долларов против 40 для лайнера «Боинг-747», 31 — для легкомоторной «цессны», 34 — для автобуса, 51 — для автомобиля и 16 — для мотоцикла.

Впрочем, поклонники разных схем спорят об их эффективности до сих пор, и это при том, что давно уже был поставлен классический эксперимент сравнения тянущего и толкающего винта на самолете Cessna Skymaster — вот таком.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Как вы видите, это двухмоторный самолет сравнительно редко применяемой схемы push-pull (тяни-толкай). Его удобство для теста — в том, что у него два совершенно одинаковых двигателя с одинаковыми винтами, и он может летать на любом моторе из двух.

Для теста определялась максимальная скорость при работающем тянущем двигателе и при толкающем (понятно, что разница в скорости даст точный практический ответ — какая схема эффективнее, с учетом всех факторов). Так вот с работающим толкающим винтом скорость самолета была больше на ~20 км/ч, чем с работающим тянущим.

И это, между прочим, немало — с учетом того, что установка толкающего винта на Скаймастере далеко не оптимальна, в то время как установка тянущего взята с классической Цессны и вылизана до предела.

Также известны и результаты испытаний нашим ЛИИ «Дорнье-Пфайля» (фашистского тяни-толкая). Запомнилась фраза «На одном заднем двигателе скорость была существенно выше, чем на одном переднем». И совсем свежий пример — когда рутановский «Вояджер» (еще один тяни-толкай) шёл без посадки вокруг шарика, для экономии топлива выключали именно передний двигатель.

Могу лишь констатировать, что на отечественном рынке легкой авиации резко превалирует схема с толкающим винтом. И это несмотря на прекращение производства А-20. И не учитывая дельталеты, автожиры и паралеты. А уж если учитывать, то… сами понимаете.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Это потому, что русские — хитрые и умные.

А тупые пиндосы как начали ездить в армии во время WW2 на Харли-Дэвидсонах с их дурацкими V-образными двухцилиндровками и отдельной коробкой передач, соединенной с двигателем ремнём — так до сих пор и ездят, не понимая, что это — анахронизм и антинаучно. Соответственно и самолеты легкие у пиндосов до сих пор в массе такие, как будто их проектировали до войны, и как бы даже не до первой мировой.

  • А ведь было дело — были у них и такие машины:
  • Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд
  • Это довоенный Bell ХР-59 (да-да, той самой фирмы Bell, которая подарила СССР «Аэрокобры», а потом заполонила весь мир массовыми вертолетами). А вот вам Douglas XB-42 Mixmaster:
  • Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Еще на стадии аванпроекта были прекрасно продуманы все технические решения, которые предстояло воплотить в этом проекте. Оснащенный рядными двигателями жидкостного охлаждения «Аллисон» V-1710-125 мощностью по 1725 л. с.

, расположенными тандемно, самолет должен был поднимать до 3600 кг бомб — столько же, сколько несла первая «летающая крепость» В-17А. Причем, благодаря большому и длинному бомбоотсеку, новая машина могла брать на борт английские 1800-кг и 3600-кг бомбы повышенной мощности.

Максимальная скорость оценивалась в 690-700 км/ч — для 1943 г. это фантастическая цифра.

Такая невероятная для среднего бомбардировщика скорость достигалась путем максимального зализывания фюзеляжа, облагораживания его аэродинамики и, главным образом, благодаря применению ламинарного крыла. Расчетная дальность полета превосходила дальность В-17 последних серий.

Необходимо отметить, что в конструкции самолета не было предусмотрено никаких принципиально новых на 1943 г. материалов и технологий, освоение которых могло задержать передачу машин в серию. Но машина в серию не пошла, потому что американские генералы — дебилы. Их тупо испугал непривычный вид самолета.

А вот вам отечественный МиГ-8 летает в 1945 году:

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Самолет собрал в себе кучу авангардных решений — толкающий винт, стреловидное крыло, схема «утка» (бесхвостка с ПГО и рулями на крыльях). Внезапно для скептиков, этот вот смешной самолёт не потерпел ни одной аварии, не имел предпосылок к лётным происшествиям. Накопленный на нем опыт применения стреловидных необдуваемых крыльев использован при постройке советских реактивных истребителей.

И хотя впрямую эта схема также показалась военным СССР слишком непривычной — но в реальности она и победила. Практически все современные истребители имеют толкающую схему (реактивный двигатель размещен в хвосте) — а машины реданной схемы (двигатель спереди) и с размещением двигателей на крыльях (как у Me-262) быстро сошли с арены, проиграв конкуренцию.

Надо заметить, что по очень близкой к винтовым машинам с толкающим винтом схеме сделаны реактивные высотные разведчики М-17 и М-55 «Геофизика» Мясищева. Там прямо вот классика — двухбалочный хвост, моторы сзади фюзеляжа перед хвостом:

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Между прочим, по результатам продувок двухбалочная схема с двигателем в заднице фюзеляжа в КБ Мясищева признана наилучшей для дозвукового высотного самолета. Она даже лучше, чем чистое «летающее крыло» (с которым как раз куча проблем технологического и компоновочного свойства).

А теперь вы, конечно, спросите — отчего же схема с толкающими винтами (именно винтами!) всё-таки применяется не повсеместно — при таких-то преимуществах? Ответ очень простой — обдув крыла.

Этот самый обдув крыла потоком воздуха от пропеллеров позволяет получить от крыла дополнительную подъемную силу не только при малой скорости движения самолета — но даже на вообще стоящем самолете. В результате можно добиться того, что самолетик типа Fieseler Fi.

Читайте также:  Как в самолете устроен туалет: как работает, куда деваются все отходы, как пользоваться, как выглядит

156 Storch (с чрезвычайно развитой механизацией крыла и высокоэффективным низкоскоростным профилем) на полном газу двигателя может взлететь буквально с места, без разбега:

На этом фото хорошо видна выпущенная механизация крыла (предкрылки и закрылки на весь размах крыла), а также заметна явно избыточная высота передних стоек шасси. Однако такое шасси сделано неспроста — именно оно задает оптимальный взлетный угол атаки крыла, позволяя взлетать почти без разбега.

В общем, вот тут и пролегает водораздел между двумя схемами. Нужен самолет для эффективного быстрого полета на большой высоте — схема с толкающим винтом выгоднее. Нужен самолет для взлета с коротких ВПП и полетов на малой скорости — схема с тянущим винтом выгоднее.

А.М.Загордан "Элементарная теория
вертолета" ГЛАВА I

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

ГЛАВА I
ПРИНЦИП ПОЛЕТА ВЕРТОЛЕТА И ОСНОВНЫЕ КОНСТРУКТИВНЫЕ ОТЛИЧИЯ ЕГО ОТ САМОЛЕТА

I.

ТЯГА НЕСУЩЕГО ВИНТА

Вертолет — летательный аппарат тяжелее воздуха.

Подъемная сила и тяга для поступательного движения у вертолета создаются при помощи несущего винта. Этим он отличается от самолета и планера, у которых подъемная сила при движении в воздухе создается несущей поверхностью — крылом, жестко соединенным с фюзеляжем, а тяга — воздушным винтом или реактивным двигателем (рис. 6).

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Рис. 6. Подъемная сила и сила движения вперед у самолета (тяга) и вертолета (тяга для движения вперед) в горизонтальном полете:

I — винтовой самолет;
II— реактивный самолет; III — вертолет

В принципе полета самолета и вертолета можно провести аналогию. В том и другом случае подъемная сила создается за счет взаимодействия двух тел: воздуха и летательного аппарата (самолета или вертолета).

По закону равенства действия и противодействия следует, что с какой силой летательный аппарат действует на воздух (вес или земное притяжение), с такой же силой воздух действует на летательный аппарат (подъемная сила).

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпдВинт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

При полете самолета происходит следующее явление: набегающий встречный поток воздуха обтекает крыло и за крылом скашивается вниз. Но воздух представляет собой неразрывную, достаточно вязкую среду, и в этом скашивании участвует не только слой воздуха, находящийся в непосредственной близости от поверхности крыла, но и соседние слои его.

Таким образом, при обтекании крыла за каждую секунду скашивается вниз назад довольно значительный объем воздуха, приблизительно равный объему цилиндра, у которого сечением является круг диаметром, равным размаху крыла, а длина — скорость полета в секунду.

Это есть не что иное, как секундный расход воздуха, участвующего в создании подъемной силы крыла (рис. 7).

Рис. 7. Объем воздуха, участвующего в создании подъемной силы самолета

Из теоретической механики известно, что изменение количества движения за единицу времени равно действующей силе:

где Р — действующая сила;

т —

секундная масса воздуха;

Δ

u — приращение скорости воздушного потока (по вертикали)

в результате взаимодействия с крылом самолета. Следовательно, подъемная сила крыла будет равна секундному приросту количества движения по вертикали в уходящей струе.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

где

l—полуразмах крыла;

V—

скорость полета в м/сек;

ρ — плотность воздуха;

и —
скорость скоса потока за крылом по вертикали в м/сек. Точно так же можно выразить полную аэродинамическую силу несущего винта вертолета через секундный расход воздуха и скорость скоса потока (индуктивную скорость уходящей струи воздуха).

Вращающийся несущий винт сметает поверхность, которую можно представить себе как несущую, аналогичную крылу самолета (рис. 8). Воздух, протекающий через поверхность, сметаемую несущим винтом, в результате взаимодействия с вращающимися лопастями отбрасывается вниз с индуктивной скоростью и.

В случае горизонтального или наклонного полета воздух притекает к поверхности, сметаемой несущим винтом под некоторым углом (косая обдувка).

Как и у самолета, объем воздуха, участвующего в создании полной аэродинамической силы несущего винта, можно представить в виде цилиндра, у которого площадь основания равна площади поверхности, сметаемой несущим винтом, а длина — скорости полета, выраженной в м/сек.

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд
Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

Рис. 8. Объем воздуха, участвующего в создании тяги несущего винта

вертолета: а — при косой
обдувке; б—при „висении» и вертикальном подъеме

При работе несущего винта на месте или в вертикальном полете (прямая обдувка) направление воздушного потока совпадает с осью несущего винта. В этом случае воздушный цилиндр будет расположен вертикально (рис.

8, б).

Полная аэродинамическая сила несущего винта выразится как произведение массы воздуха, протекающего через поверхность, сметаемую несущим винтом за одну секунду, на индуктивную скорость уходящей струи:

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

где

πD2/4 —
площадь поверхности, ометаемой несущим винтом;

V—

скорость полета в м/сек;

ρ

— плотность воздуха;

u —

индуктивная скорость уходящей струи в м/сек. Необходимо оговориться, что в рассмотренных случаях как для крыла самолета, так и для несущего винта вертолета за индуктивную скорость и принимается индуктивная скорость уходящей струи на каком-то удалении от несущей поверхности. Индуктивная скорость струи воздуха, возникающая на самой несущей поверхности имеет в два раза меньшую величину.

Такое толкование происхождения подъемной силы крыла или полной аэродинамической силы несущего винта не является совершенно точным и справедливо только в идеальном случае. Оно лишь принципиально правильно и наглядно объясняет физический смысл явления. Здесь же уместно отметить одно очень важное обстоятельство, вытекающее из разобранного примера.

  • Если полная аэродинамическая сила несущего винта выражается как произведение массы воздуха, протекающего через поверхность, ометаемую несущим винтом, на индуктивную скорость, а объем этой массы есть цилиндр, у которого основанием является площадь поверхности, ометаемой несущим винтом, и длиной — скорость полета, то совершенно ясно, что для создания тяги постоянной величины (например, равной весу вертолета) при большей скорости полета, а значит, и при большем объеме отбрасываемого воздуха, требуется меньшая индуктивная скорость и, следовательно, меньшая мощность двигателя.
  • Наоборот, для поддержания вертолета в воздухе при “висении” на месте требуется больше мощности, чем во время полета с некоторой поступательной скоростью, при которой имеет место встречный поток воздуха за счет движения вертолета.
  • Иными словами, при затрате одной и той же мощности (например, номинальной мощности двигателя) в случае наклонного полета с достаточно большой скоростью можно достичь большего потолка, чем при вертикальном подъеме, когда общая скорость перемещения

вертолета меньше, чем в первом случае. Поэтому у вертолета имеется два потолка: статический, когда высота набирается в вертикальном полете, и динамический, когда высота набирается в наклонном полете, причем динамический потолок всегда выше статического.

В работе несущего винта вертолета и воздушного винта самолета есть много общего, но имеются и принципиальные отличия, о которых будет сказано дальше.

Сравнивая их работу, можно заметить, что полная аэродинамическая сила, а следовательно, и тяга несущего винта вертолета, являющаяся составляющей силы

R
в направлении оси втулки, всегда больше (в 5—8 раз) при одинаковой мощности двигателя и одинаковом весе летательных аппаратов за счет того, что диаметр несущего винта вертолета в несколько раз больше диаметра воздушного винта самолета. При этом скорость отбрасывания воздуха у несущего винта меньше, нежели скорость отбрасывания у воздушного винта.

Величина тяги несущего винта в очень большой степени зависит от его диаметра

D
и числа оборотов. При увеличении диаметра винта в два раза тяга его увеличится приблизительно в 16 раз, при увеличении числа оборотов вдвое тяга увеличится приблизительно в 4 раза. Кроме того, тяга несущего винта зависит также от плотности воздуха ρ, угла установки лопастей φ (шага несущего винта),
геометрических и аэродинамических характеристик данного винта, а также от режима полета. Влияние последних четырех факторов выражается обычно в формулах тяги воздушного винта через коэффициент тяги ат.
.

Таким образом, тяга несущего винта вертолета будет пропорциональна:

— диаметру винта в четвертой степени …… D4

квадрату секундных оборотов несущего винта . . . n2s

— плотности воздуха

…………. ρ
           
— коэффициенту тяги …………. αr

Само собой разумеется, что увеличение диаметра или скорости вращения винта влечет за собой и увеличение потребной мощности. Следовательно, величина тяги в конечном итоге зависит и от мощности двигателя.

Необходимо отметить, что на величину тяги при полетах у земли оказывает влияние так называемая “воздушная подушка”, благодаря чему вертолет может оторваться от земли и подняться на несколько метров при затрате мощности меньшей, чем та, которая необходима для “висения” на высоте 10—15 м.

Наличие “воздушной подушки” объясняется тем, что воздух, отбрасываемый винтом, ударяется о землю и несколько поджимается, т. е. увеличивает свою плотность. Влияние “воздушной подушки” особенно сильно сказывается при работе винта у земли.

За счет поджатия воздуха тяга несущего винта в этом случае, при одной и той же затрате мощности, увеличивается на 30—

40%. Однако с удалением от земли это влияние быстро уменьшается, а при высоте полета, равной половине диаметра винта, “воздушная подушка” увеличивает тягу только на 15—20%. Высота “воздушной подушки” приблизительно равна диаметру несущего винта. Далее прирост тяги исчезает.

Для грубого расчета величины тяги несущего винта на режиме висения пользуются следующей формулой:

T=(aND)2/3

где Т—тяга несущего винта (для режима висения при безветрии Т ≈

R) в кг; N — мощность двигателя в л. с.; D — диаметр несущего винта вм,

а —

коэффициент, характеризующий аэродинамическое качество несущего винта и влияние “воздушной подушки”. В зависимости от характеристик несущего винта величина коэффициента а при висении у земли может иметь значения 15 — 25.

Несущий винт вертолета обладает исключительно важным свойством — способностью создавать подъемную силу на режиме самовращения (авторотации) в случае остановки двигателя, что позволяет вертолету совершать безопасный планирующий или парашютирующий спуск и посадку.

Вращающийся несущий винт сохраняет необходимое число оборотов при планировании или парашютировании, если его лопасти будут переведены на небольшой угол установки

(l—50)1. При этом сохраняется подъемная сила, обеспечивающая спуск с постоянной вертикальной скоростью (6—10 м/сек), с последующим уменьшением ее при выравнивании перед посадкой до l—1,5 м/сек.

В работе несущего винта в случае моторного полета, когда мощность от двигателя передается на винт, и в случае полета на режиме самовращения, когда энергию для вращения винта он получает от встречной струи воздуха, имеется существенное отличие.

Рис. 9. Взаимодействие воздушного потока с несущим
винтом

вертолета:

I

— скос потока в моторном полете; II — скос потока на режиме самовращения винта

В моторном полете встречный воздух набегает на несущий винт сверху или сверху под углом. При работе винта на режиме самовращения воздух набегает на плоскость вращения снизу или под углом снизу (рис. 9).

Скос потока за несущим винтом в том и другом случае будет направлен вниз, так как индуктивная скорость согласно теореме о количестве движения будет направлена прямо противоположно тяге, т. е.

приближенно вниз по оси несущего винта.

1

Здесь речь идет об эффективном угле установки в отличие от конструктивного.

Особенности работы винтов. соосной схемы

При вращении лопасти несущих винтов отбрасывают воздух вниз. На место отброшенного воздуха поступает новый. Поэтому сверху воздух движется к винтам с индук­тивной скоростью подсасывания щ, а снизу — от винтов с индуктивной скоростью отбрасывания v2. Исследования по­казали, что v2=2vi.

Проходя через винты, масса воздуха изменяет свою скорость от Vy до V2 (рис. 1.8). Следовательно, изменяет­ся количество движения этой массы, которое согласно за­кону механики равно импульсу приложенной к массе си­лы. Воздействуя на воздух, несущие винты сами отталки­ваются от него, т. е. создают тягу. Тогда для идеального винта получим:

  • Ft = mV 2 — mV у Т = ^( V2-Vy),
  • тп
  • где—- — тс— секундный расход воздуха;
  • V 2— Уу = У г— индуктивная скорость отбрасывания.
Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

При работе винта на месте wc = pF0Mvt. где р — мас­совая плотность воздуха.

  1. Учитывая, что v2=2vit формула тяги идеального винта при работе его на месте будет иметь вид:
  2. Т = 2pFOMv.
  3. Из формулы видно, что при постоянной массовой плот­ности воздуха тяга зависит от квадрата индуктивной скоро­сти подсасывания, которая определяет секундный расход
  4. іпндуха через НВ и зависит от частота вращения НВ (п) її vi ла установки лопастей НВ (9).
  5. При сравнении соосных несущих винтов и одного НВ і * и о же диаметра с одинаковыми коэффициентами запол­нения соосный винт имеет ряд преимуществ, основными из которых являются:
  6. — большой коэффициент использования мощности (за пет особенностей совместной работы ВНВ и ННВ и отсут — ггиия хвостового винта);
  7. — независимость управления (перемещение одного из командных рычагов управления не вызывает необходимо­сти перемещения других для балансировки вертолета);
  8. — компактность конструкции, которая обеспечивается отсутствием хвостового винта.

При совместной работе соосные винты оказывают взаим­ное влияние. Так, ННВ создает дополнительное просасыва — ппс воздуха через ВНВ. В то же время индуктивная ско­рость ННВ увеличивается на величину Ди1в (рис. 1.8), так как он находится в воздушном потоке от ВНВ.

При этом суммарные индуктивные скорости ВНВ и ННВ не равны, что создает неравенство углов атаки лопастей на одинако­вых сечениях.

Воздушный поток, отбрасываемый ВНВ, закручивается в сторону, противоположную вращению ІІНВ, что увеличивает окружную скорость обтекания эле­ментов лопасти ННВ на величину скорости закрутки (), которая является переменой по радиусу.

Этот фактор вы­равнивает углы атаки сечений ВНВ и ННВ, но так как ІIНВ работает в худших условиях, он создает больший реактивный момент. Для выравнивания реактивных момен­тов от ВНВ и ННВ установочные углы лопастей ННВ на 1°15′ меньше установочных углов ВНВ. При этом соотно­шение тяг, создаваемых ВНВ и ННВ:

Взаимное влияние винтов при работе определяет выбор расстояния между ними.

Увеличение расстояния h между винтами ухудшает условия работы ННВ, усложняет конст­рукцию системы, увеличивает тряску, а уменьшение вызы­вает опасность недопустимого сближения концов лопастей ВНВ и ННВ.

Экспериментально установлено, что опти­мальным является расстояние /г = (0,08 — 0,1) D, при кото­ром ННВ не влияет на работу ВНВ, а струя воздуха от ВНВ, сужаясь в плоскости ННВ, составляет около 0,7R.

Практически тяга соосных винтов больше тяги эквива­лентного винта на 3—10%, следовательно, для создания одной и той же тяги соосные винты требуют меньших зат­рат мощности.

Как вычислить шаг воздушного винта

Рейтинг:  3 / 5

Винт самолета: однополостная лопасть, реактивный момент, расчет лопастной тяги, воздушного шага, толкающие, четырехлопастной и другие виды, как пулемет стреляет, особенности стрельбы, кпд

       Чтобы обеспечить поступательное движение модели самолета, необходимо приложить к ней силу тяги. Ее создает воздушный винт, приводимый во вращение авиамодельным двигателем.

Лопасти винта, вращаясь, отбрасывают поток воздуха назад — в сторону, противоположную направлению полета.

Чем больше масса и скорость воздушного потока, отбрасываемого винтом, тем больше сила тяги винта.

       Воздушные винты имеют различные геометрические характеристики. Важнейшими из них являются диаметр и шаг винта.

Диаметр винта DB — это диаметр окружности, описываемой при вращении концами лопастей.

Теоретический шаг винта Н — это расстояние, проходимое элементом лопасти в направлении полета за 1 оборот винта, движущегося поступательно с определенной скоростью; при этом предполагается, что винт вращается в неподатливой (твердой) среде (см.рис).

Но так как винт вращается в воздухе, частицы которого проскальзывают на поверхности винта, та за 1 оборот он проходит меньшее расстояние. Фактически пройденное расстояние называется действительным шагом или поступью винта, а разница между теоретическим (расчетным) шагом и действительным — скольжением.

Действительный шаг винта можно вычислить по формуле H=v/n,

                 где v — скорость модели, м/с;

                 n— частота    вращения,    с-1.

       Для   сравнения   различных винтов введено понятие относительного шага: h=H/DB у кордовых пилотажных моделей относительный шаг воздушных винтов равен (0,4—0,6) DB. Для получения полной мощности двигателя модели нужно правильно подобрать размеры винта — диаметр, шаг, ширину лопасти.

       Рассмотрим упрощенный способ расчета воздушного винта для кордовой тренировочной модели с двигателем МАРЗ-2,5: скорость полета 80 км/ч (22 м/с), частота вращения винта 10 000 об/мин (166 с-1).

За 1 оборот винт пройдет расстояние Н = v/n= (22/166) м = 0,13 м, т. е. шаг винта Н — 130 мм.

  •      Более детально ознакомиться со способами расчета воздушного винта можно в замечательной книге Жидкова Станислава «Секреты высоких скоростей кордовых моделей самолетов» начиная с 113 страницы
  •      Если вам нужны простые советы и рекомендации по выбору воздушного винта для своей модели, смотрите тут.
  •  Кордовые модели F2B | Control line stunt | Aerobatics

Теория лопастей винта — POZDPAK.RU

  Трудно представить себе движитель более универсальный, чем воздушный винт. Он годится чуть ли не для любого транспортного средства: глиссера и аэросаней, самолета и мотодельтаплана, аэрохода и экранолета. Мы применим для ветроустановок.

        Однако далеко не все энтузиасты-самодельщики четко представляют себе, как правильно рассчитать параметры воздушного винта.

Действуя методом проб и ошибок, они подчас теряют много времени и сил, создавая десятки различных пропеллеров в надежде найти такой, который применительно к конкретному двигателю и транспортному средству обеспечивал бы оптимальную тягу.

        Выполняя многочисленные пожелания читателей, редакция обратилась с просьбой к члену технической комиссии слетов СЛА, инженеру-авиаконструктору В. П. Кондратьеву разработать упрощенную методику расчета воздушных винтов.

        Расчет и подбор воздушного винта к двигателю, а также к конкретным самолету, глиссеру или аэросаням — сложная и тонкая задача. Теорией 1воздушного винта занимались и продолжают заниматься известные ученые-аэродинамики, и для тех, кто хочет углубленно изучить методику расчета винтов, можно рекомендовать известные книги, посвященные этому вопросу.

        Правда, существующие теории мало пригодны для практического использования и к тому же базируются на сложном математическом аппарате. Ну а для конструкторов-любителей более простой и доступной является методика, основанная на статистическом обобщении данных лучших воздушных винтов.        Сразу же отметим, что речь пойдет в дальнейшем лишь о моноблочных деревянных винтах фиксированного шага. Такие винты просты, надежны и наиболее доступны для изготовления в любительских ycловиях. Следует сказать, что во многих странах мира применение самодельных металлических — и особенно гнутых — винтов запрещено. Они опасны и недостаточно надежны, имеют ограниченный ресурс, и зафиксировано немало случаев их разрушения как во время испытаний, так и во время эксплуатации. То же можно отнести и к винтам изменяемого — а тем более изменяемого автоматически — шага.

        Исходными данными для подбора винтов для самодеятельных конструкторов обычно являются мощность двигателя Nдв (л. с.), частота вращения воздушного винта nв (мин-1), максимальная скорость движения (полета) Vмакс (км/ч) и расчетная скорость для винта Vp (км/ч).        Несколько замечаний применительно к расчетной скорости.

Воздушный винт фиксированного шага, как известно, является однорежимным. Это означает, что максимальный КПД он обеспечивает только на одной — расчетной — скорости и (для летательного аппарата) только на одной расчетной высоте. Однако мы все же будем полагать, что расчетная высота (в том числе и для любительского самолета) близка к нулю, а расчетная скорость задается самим конструктором.

        Следует помнить, что если аппарат предназначается для достижения максимально возможной скорости, то именно она и будет являться расчетной. Если, например, самолет должен обеспечивать наилучшие взлетные характеристики, то за расчетную условно принимается скорость, близкая к нулевой. При этом винт развивает наибольшую статическую тягу — тягу на месте.

Именно так подбираются винты для глиссеров, аэросаней, мотодельтапланов и ультралегких самолетов.

        Есть еще один параметр, который иной раз является определяющим для самолета. При этом расчетной скоростью для винта становится наивыгоднейшая скорость набора высоты.

Если винт рассчитан на это — самолет имеет наивысшую скороподъемность.

Наивыгоднейшую скорость набора (Vнаб) для самолета можно ориентировочно определить по номограмме, изображенной на рисунке, или подсчитать по следующей эмпирической формуле: 

где G взл — взлетный вес, l кр- размах крыла.        Для пилотажного самолета, развивающего высокую скорость в пикировании, необходим воздушный винт фиксированного шага, который в режиме ветряка не раскручивался бы до, оборотов, превышающих предельно допустимые. В противном случае следует установить пропеллер несколько большего шага.

        Надо сразу же примириться с мыслью, что ни один расчет не позволит сразу и с высокой точностью определить все параметры винта фиксированного шага. По утверждению известного западногерманского специалиста по конструированию винтов Г. Мюль-бауэра, точный расчет таких винтов — дело бесполезное.

Возглавляемая им фирма предлагает заказчикам, как правило, несколько винтов, шаг которых, а иногда и диаметр существенно отличаются. Далее заказчик, испытывая самолет, подбирает наилучший движитель. Именно фирма для выпускаемого самолета.

Кроме того, летательный аппарат комплектуется, как правило, несколькими винтами: скоростным, скороподъемным, пропеллером для крейсерских полетов на максимальную дальность или другими, в зависимости от требовании заказчика.        Приблизительно так поступают и инструкторы-любители.

Даже самые тщательные расчеты не дают возможности получить идеальный для данного транспортного средства аэродвижитель. Лишь в процессе испытании — заездов или полетов — станет ясно, как видоизменить винт, уменьшить или же увеличить его шаг. Как правило, лишь второй (а то и третий) пропеллер позволяет достичь оптимального результата.

        Методика же, которая здесь предлагается, вполне позволяет создать исходный винт — если можно так выразиться, винт первого приближения. И уже испытания покажут, появятся ли необходимость в следующем, более подходящем для созданного вами транспортного средства.

        Проектирование винта начинайте с определения его диаметра и шага. Для этого воспользуйтесь монограммами на рисунке 1:

Скольки лопастной идеальный винт?

Наткнулся вот на такую весёлую штуку:

РЕАКТИВНЫЙ ТУРБО-ПРОПЕЛЛЕР В. Н. ЮРЬЕВА.

Уже неоднократно были предложения передавать энергию на винт с помощью реактивного (отталкивающего) действия струй воздуха, выходящей через отверстия в заднем краю лопасти винта. Воздух внутрь лопасти предполагалось подавать посредством компрессора (см. рис. 1).

Подобное устройство нецелесообразно, так как здесь вес передачи получается слишком большим и, кроме того производительность не очень велика, вследствие больших потерь энергии в компрессоре, трубопроводе и в самой реактивной турбине.
Б. Н.

Юрьевым предложена новая оригинальная конструкция реактивного пропеллера, в котором эти недостатки устранены, и который отличается тем, что не требует совершенно мотора. Устройство его довольно просто.

Рис. 2. А — отверстие для воздуха, Б — трубка, подающая горючее, В — форсунки, Г — запальные трубки, Д — выпускное отверстие.

Изготовляется полый пропеллер с небольшим центральным отверстием А (см. рис. 2), через которое, самой же лопастью, действующей здесь, как центробежный насос, всасывается воздух. Из центра воздух центробежной силой отбрасывается к концу лопасти. К концу же лопасти, по трубопроводу Б, подается жидкое горючее, которое разбрызгивается помощью форсунок В.

Распыленное топливо смешивается с воздухом и, зажигаясь запальными металлическими или фарфоровыми трубками Г, сгорает. Образующиеся раскаленные газы вырываются через отверстия в запальных трубках и подогревают имеющийся в конце лопасти воздух. Давление его сильно повышается, после чего происходит то же, что и в винте, работающем сжатым воздухом.

Необходимый для работы форсунок напор создается насосом, подающим к ним жидкое топливо.
По вычислениям Юрьева, нагревание воздуха, а следовательно и работа винта, требуют совершенно незначительного количества горючего.

Для увеличения коэффициента полезного действия этого пропеллера, можно применить легкое предварительное сжатие поступающего в полость его воздуха. Это легко достигается укреплением на втулке „турбо-пропеллера“ центробежного компрессора, приводимого в движенце самим же винтом посредством специальных зубчаток, увеличив число оборотов компрессора до желаемого.

Этот же компрессор может быть использован и для улучшения работы „турбо-пропеллера“ на больших высотах, как это делается в высотах бензиновых моторов.

Изобретение автором запатентовано.

Оригинал статьи: http://epizodsspace.airbase.ru/bibl/n_i_t/1925/r-pr.html

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *